Chapitre 2

Suites numériques

2.1 Quelques définitions

Définition 3

Suite : Une suite est une liste ordonnée de nombres portants des indices.

- $\star (U_0; U_1; U_2; U_3; \dots; U_n; \dots)$ ou $(U_1; U_2; U_3; \dots; U_n; \dots)$
- \star On note en général une suite de la forme suivante $(U_n)_{n\in\mathbb{N}}$.
- * En général, on parle de "suite" à la place de "suite numérique"

Définition 4

Terme:

- ★ Chaque élément de la suite est appelé "terme"
- $\not\approx$ On les note : $U_0; U_1; U_2; U_3; \cdots; U_n; \cdots$
- * Les termes peuvent aller de 0 à l'infini.

Définition 5

Terme général : Si $U_n = f(n)$ alors le terme U_n représente le "terme général" de la suite.

Exemple 8

La liste $(1;3;5;7;\cdots)$ représente la suite des nombres impairs définie par le terme général $U_n = 2n + 1$, $(\forall \in \mathbb{N})$.

Définition 6

Suite explicite : Une suite définie par son terme général est une "suite explicite"

Exemple 1

Suite récursive : Une suite définie par son premier terme et une relation entre les terme consécutifs est une "suite récursive"

La suite $(U_n)_{n\in\mathbb{N}}$ définie par : $U_0=-3$, $U_{n+1}=\frac{3+U_n}{2}$. est une suite récursive.

On dit d'une telle suite qu'elle est récurrente.

2.2 Raisonnement par récurrence

Soit P(n) une relation dépendante d'un entier naturel n.

- $*P(n_0)$ est vraie (c'est à dire au premier rang) et
- $\not \approx P(n)$ vraie $\longleftrightarrow P(n+1)$ vraie alors

 $\forall n \in \mathbb{N}, n > 0$ P(n) est vraie

Soit $(U_n)_{n\in\mathbb{N}}$ la suite définie par : $\begin{cases} U_0 = -3 \\ U_{n+1} = \frac{3+U_n}{2} \end{cases}$ Montrez par récurrence que $\forall n \in \mathbb{N}, \ U_n \leq 3$

Solution 1

Démonstration

- ★ On a : $U_0 = -3 \Rightarrow U_0 < 3$ est vraie au premier rang.
- ★ Supposons que $\forall n \in \mathbb{N}, U_n \leq 3$ et montrons que : $U_{n+1} \leq 3$.

D'après les données, on a :
$$U_{n+1} = \frac{3 + U_n}{2}$$

or $U_n \le 3 \Rightarrow 3 + U_n \le 6$
 $\Rightarrow \frac{3 + U_n}{2} \le 3$
 $\Rightarrow U_{n+1} \le 3$

Conclusion

Par conséquent $\forall n \in \mathbb{N}, U_n \leq 3$.

Exemple 11

Exemple 12

2.3 Convergence-Divergence

Soit $(U_n)_{n\in\mathbb{N}}$ une suite et l un élément de \mathbb{R} .

On dit que $(U_n)_{n\in\mathbb{N}}$ converge vers l si les valeurs des termes de la suite peuvent s'approcher aussi près que l'on veut de l en prenant n suffisamment grand.

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} / \forall n \ge n_0 \text{ on a } |U_n - l| \le \varepsilon$$

NB: Toute suite convergente admet une limite.

Ainsi, si $(U_n)_{n\in\mathbb{N}}$ converge vers l alors $\lim_{n\to+\infty}U_n=l$

Remarque: Une suite qui ne converge pas est dite divergente.

* La suite $(U_n)_{n\in\mathbb{N}}$ définie par $:U_n=\frac{\cos(n)}{n^2}$ converge vers 0 mais sa limite n'est pas évidente.

* La suite $(U_n)_{n\in\mathbb{N}}$ définie par le terme général $U_n = \frac{1}{n}$ $(n \in \mathbb{N}^*)$ est convergente et converge vers 0: $\lim_{n \to +\infty} \frac{1}{n} = 0$

2.4 Relation d'ordre des suites convergentes

* Théorème d'encadrement

Soient $(U_n)_{n\in\mathbb{N}}$, $(V_n)_{n\in\mathbb{N}}$ et $(W_n)_{n\in\mathbb{N}}$ trois suites vérifiant la relation : $U_n \leq V_n \leq W_n \ (\forall n \in \mathbb{N}).$

Si
$$\lim_{n\to+\infty} U_n = \lim_{n\to+\infty} W_n = l$$
 alors $\lim_{n\to+\infty} V_n = l$

Etudions la convergence de la suite $(U_n)_{n\in\mathbb{N}^*}$ définie par $U_n=\frac{\cos(n)}{n^2}$.

Solution 2

On sait que $\forall n \in \mathbb{N}^*, -1 \le \cos(n) \le 1 \Rightarrow -\frac{1}{n^2} \le \frac{\cos(n)}{n^2} \le \frac{1}{n^2}$.

Or $\lim_{n\to+\infty} -\frac{1}{n^2} = \lim_{n\to+\infty} \frac{1}{n^2} = 0$, d'après le théorème d'encadrement, on a $\lim_{n\to+\infty} U_n = 0$. La suite (U_n) converge vers 0.

2.5 Variation d'une suite

- $\not \approx (U_n)_{n \in \mathbb{N}}$ est dite constante si et seulement si $U_{n+1} = U_n, \ \forall n \in \mathbb{N}$.
- $\not \approx (U_n)_{n \in \mathbb{N}}$ est dite croissante si et seulement si $U_{n+1} \ge U_n, \ \forall n \in \mathbb{N}$.
- $\bigstar (U_n)_{n \in \mathbb{N}}$ est dite décroissante si et seulement si $U_{n+1} \leq U_n, \ \forall n \in \mathbb{N}.$

Remarque 3

Pour étudier la variation d'une suite $(U_n)_{n\in\mathbb{N}}$, on étudie le signe de la différence $(U_{n+1}-U_n)$:

$$U_{n+1} - U_n = \begin{cases} 0 \Rightarrow (U_n)_{n \in \mathbb{N}} \text{ est constante} \\ \leq 0 \Rightarrow (U_n)_{n \in \mathbb{N}} \text{ est décroissante} \\ \geq 0 \Rightarrow (U_n)_{n \in \mathbb{N}} \text{ est croissante} \end{cases}$$

Soit $(U_n)_{n\in\mathbb{N}}$ une suite définie par : $\begin{cases} U_0 = -3 \\ U_{n+1} = \frac{3+U_n}{2} \end{cases}$ On sait que $\forall n \in \mathbb{N}$

Étudiez la variation de cette suite.

Solution 3

$$U_{n+1} - U_n = \frac{3 + U_n}{2} - U_n$$
$$= \frac{3 + U_n - 2U_n}{2}$$
$$U_{n+1} - U_n = \frac{3 - U_n}{2}$$

Or il a été démontré à l'exemple 10 que $\forall n \in \mathbb{N}, U_n \leq 3$ $U_n \leq 3, \Rightarrow 3 - U_n \geq 0 \Rightarrow \frac{3 - U_n}{2} \geq 0.$ $\frac{3 - U_n}{2} \geq 0 \Rightarrow U_{n+1} - U_n \geq 0.$ D'où $(U_n)_{n \in \mathbb{N}}$ est croissante.

2.6 Suite majorée-Suite minorée

 i_1) Une suite $(U_n)_{n\in\mathbb{N}}$ est dite majorée si et seulement si $\exists M\in\mathbb{R}$ tel que $\forall n\in\mathbb{N},\ U_n\leq M\ (\mathbf{M} \text{ est un majorant de }(U_n))$

Exemple 15

La suite $(U_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} U_0=-3\\ U_{n+1}=\frac{3+U_n}{2} \end{cases}$ Etudiée à l'exemple 10 et 13

 i_2) Une suite $(U_n)_{n\in\mathbb{N}}$ est dite minorée si et seulement si $\exists m\in\mathbb{R}$ tel que $\forall n\in\mathbb{N},\ U_n\geq m$ (m est un minorant de (U_n))

2.7 Critère de convergence

• Toute suite croissante et majorée est convergente. Cas de la suite (U_n) de l'exemple 10 et 13.

La suite $(U_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} U_0 = -3 \\ U_{n+1} = \frac{3+U_n}{2} \end{cases}$

Comme vu qu'elle est croissante et majorée alors Comme (U_n) est croissante et majorée alors elle est convergente.

• Toute suite décroissante et minorée est convergente.

2.8 Suites adjacentes

Deux suites $(U_n)_{n\in\mathbb{N}}$ et $(V_n)_{n\in\mathbb{N}}$ sont dites adjacentes si et seulement si l'une est croissante, et l'autre décroissante et la limite de leur différence est nulle $\lim_{n\to\infty}(U_n-V_n)=0$

Propriété 4

Deux suites adjacentes sont convergentes et convergent vers la même limite.

Soit $(U_n)_{n\in\mathbb{N}}$ et $(V_n)_{n\in\mathbb{N}}$ deux suites définies respectivement par :

$$U_n = \sum_{k=1}^n \frac{1}{k!}$$
 et $V_n = U_n + \frac{1}{n \cdot n!}$

Montrez que $(U_n)_{n\in\mathbb{N}}$ et $(V_n)_{n\in\mathbb{N}}$ sont convergentes et admettent la même limite.

Solution 4

Étudions leur sens de variation :

• $(U_n)_{n\in\mathbb{N}}$

$$U_{n+1} - U_n = \sum_{k=1}^{n+1} \frac{1}{k!} - \sum_{k=1}^{n} \frac{1}{k!}$$
$$= \sum_{k=1}^{n} \frac{1}{k!} + \frac{1}{(n+1)!} - \sum_{k=1}^{n} \frac{1}{k!}$$
$$U_{n+1} - U_n = \frac{1}{(n+1)!}$$

 $\forall n \in \mathbb{N}, \ n+1>0 \Rightarrow (n+1)!>0$ et donc $U_{n+1}-U_n>0$. Ce qui permet de dire que (U_n) est une suite croissante.

On démontre également que (V_n) est décroissante puis :

$$\lim_{n \to +\infty} (U_n - V_n) = \lim_{n \to +\infty} -\frac{1}{n \cdot n!}$$
$$\lim_{n \to +\infty} (U_n - V_n) = 0$$

Comme (U_n) et (V_n) sont respectivement croissante et décroissante et que $\lim_{n\to+\infty} (U_n-V_n)=0$ alors (U_n) et (V_n) sont adjacentes. Ce qui permet de conclure qu'elles sont convergentes et convergent vers la même limite.

2.9 Suites classiques

2.9.1 Suites arithmétiques

 $\not\approx (U_n)$ est une suite arithmétique si et seulement si $\forall n \in \mathbb{N}, U_{n+1} - U_n = r$ (r est appelé raison de la suite)

- Si r > 0, (U_n) est croissante,
- Si r < 0, (U_n) est décroissante,

 \star Connaissant un terme quelconque U_p ,

$$U_n = U_p + (n - p)r$$

* Somme des termes d'une suite arithmétique :

$$S_n = \sum_{k=0}^n U_k = (n+1)(U_0 + U_n) \times \frac{1}{2}$$

Avec (n+1) le nombre de termes.

2.9.2 Suites géométriques

* (U_n) est une suite géométrique si et seulement si $\forall n \in \mathbb{N}, \frac{U_{n+1}}{U_n} = q$ (q est appelé raison de la suite)

Dans une suite à termes positifs, on a :

- Si q > 1, (U_n) est croissante,
- Si q < 1, (U_n) est décroissante.
- \star Connaissant un terme quelconque U_p ,

$$U_n = U_p \times q^{n-p}$$

* Somme des termes d'une suite géométrique :

$$S_n = \sum_{k=0}^n U_k = U_0 \times \frac{(1 - q^{(n+1)})}{1 - q}$$

Avec (n+1) le nombre de termes.

 U_0 le premier terme.

• Si -1 < q < 1 alors $\lim_{n \to +\infty} q^n = 0$

2.9.3 Suites arithmético-géométriques

* Une suite (U_n) est dite arithmmético géométrique si et seulement si, elle est de la forme :

$$U_{n+1} = aU_n + b,$$
 $a \in \mathbb{R}^* - \{1\}, b \in \mathbb{R}^*$

et U₀ donné.

* Le terme général est donné par :

$$U_n = a^n U_0 + b \left(\frac{1 - a^n}{1 - a} \right)$$

2.9.4 Suites récurrentes linéaires d'ordre 2 à coefficients constants

* Ce sont des suites de la forme :

$$U_{n+2} = aU_{n+1} + bU_n,$$
 $a, b \in \mathbb{R}$

et U_0 , u_1 donnés.

* Détermination du terme général U_n .

On associe l'équation caractéristique $r^2 = ar + b \Rightarrow r^2 - ar - b = 0$ dont le discriminant est $\Delta = a + 4b$

— Si $\Delta > 0$ alors on a deux solutions réelles distinctes r_1 et r_2 .

$$U_n = Ar_1^n + Br_2^n$$
, $A, B \in \mathbb{R}$

— Si $\Delta = 0$ alors on a une solution double r_0 .

$$U_n = (An + B)r_0^n, \qquad A, B \in \mathbb{R}$$

— Si $\Delta < 0$ alors on a deux solutions complexes conjuguées $r_1 = u + iv$ et $r_2 = u - iv$.

$$U_n = u^n [A\cos(nv) + B\sin(nv)], \qquad A, B \in \mathbb{R}$$

Propriété !

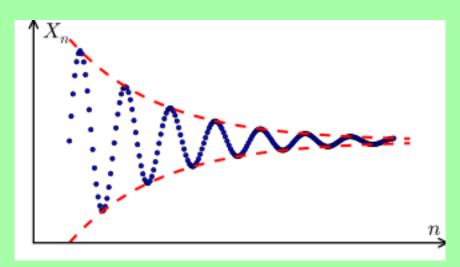
Les constantes A et B sont déterminées par les termes U_0 et U_1 .

2.9.5 Suite de CAUCHY

Une suite (U_n) est de **CAUCHY** si et seulement si :

 $\forall \varepsilon > 0$, $\exists N_0 \in \mathbb{N} / \forall p > N_0 \text{ et } q > N_0 \text{ on a } |U_p - U_q| \le \varepsilon$

Exemple de représentation graphique



Propriété (

Une suite est convergente si et seulement si elle est de CAUCHY

2.10 Limite des suites convergentes de la forme $U_{n+1} = f(U_n)$

Soit $f: I \to J$ une fonction continue telle que $f(I) \subset I$

Soit (U_n) une suite convergente telle que $U_{n+1} = f(U_n)$.

La limite $l = \lim_{x \to +\infty} U_n$ vérifie l'équation f(l) = l.